Commits


Yulong Wang authored and GitHub committed e5ca3f3dcb1
[js/api] introducing IO binding for tensor (#16452) [//]: # (## Work In Progress. Feedbacks are welcome!) ### Description This PR adds a few properties, methods and factories to Tensor type to support IO-binding feature. This will allow user to create tensor from GPU/CPU bound data without a force transferring of data between CPU and GPU. This change is a way to resolve #15312 ### Change Summary 1. Add properties to `Tensor` type: a. `location`: indicating where the data is sitting. valid values are `cpu`, `cpu-pinned`, `texture`, `gpu-buffer`. b. `texture`: sit side to `data`, a readonly property of `WebGLTexture` type. available only when `location === 'texture'` c. `gpuBuffer`: sit side to `data`, a readonly property of `GPUBuffer` type. available only when `location === 'gpu-buffer'` 2. Add methods to `Tensor` type (usually dealing with inference outputs): - async function `getData()` allows user to download data from GPU to CPU manually. - function `dispose()` allows user to release GPU resources manually. 3. Add factories for creating `Tensor` instances: a. `fromTexture()` to create a WebGL texture bound tensor data b. `fromGpuBuffer()` to create a WebGPUBuffer bound tensor data c. `fromPinnedBuffer()` to create a tensor using a CPU pinned buffer ### Examples: create tensors from texture and pass to inference session as inputs ```js // when create session, specify we prefer 'image_output:0' to be stored on GPU as texture const session = await InferenceSession.create('./my_model.onnx', { executionProviders: [ 'webgl' ], preferredOutputLocation: { 'image_output:0': 'texture' } }); ... const myImageTexture = getTexture(); // user's function to get a texture const myFeeds = { input0: Tensor.fromTexture(myImageTexture, { width: 224, height: 224 }) }; // shape [1, 224, 224, 4], RGBA format. const results = await session.run(myFeeds); const myOutputTexture = results['image_output:0'].texture; ```